

High-Precision Mirrors for Cornographic Applications

Frank Giglio
Eastman Kodak Company
Oct. 15, 2003

TPF Science, Technology and Design Expo

TAKE PICTURES FURTHER.

Program Objectives

Technology Demonstration Mirror (TDM)

- Demonstrate that a large, lightweight, space-qualifiable mirror can be finished and coated to achieve the type of mid-spatial performance needed for a coronagraphic TPF
- Demonstrate that this mirror's surface can be measured to within the accuracy needed for a coronagraphic TPF
- Demonstrate that this mirror will maintain its performance through mounting, transportation, handling, launch, and operation

Large Monolithic Mirror (LMM)

- Develop Mirror Concept for TPF Mission
- Perform first-order risk-reduction experiments to demonstrate blank manufacturing feasibility

Kodak's Baseline Mirror Design for TDM

TAKE PICTURES FURTHER.

- A preliminary 1.9 m off-axis mounted mirror design has been completed, which satisfies TDM requirements
 - <u>Material</u>: Corning ULE® glass gives thermal stability
 - Sandwich Construction: A lightweight honeycomb core sandwiched between front & back faceplates gives structural efficiency (minimizes mirror depth & mass)
 - <u>Segmented Core:</u> Reduces core fabrication risk and cost significantly
 - Low-Temperature Fused (LTF): Gives highly stable all-ULE® construction
 - <u>Low-Temperature Slumped (LTS):</u>
 Gives efficient near-net shape fabrication and uniform faceplate thicknesses. Processing of components as plano prior to LTS results in reduced cost

TDM Mounting

- Mounting and testing large, passive mirrors for zero-g applications is not trivial
- Kodak has demonstrated a proprietary design to virtually eliminate mount strain
 - No complex instrumentation required
 - Enables quick integration of PM onto mount struts
 - Readily allows for pre- and post- strut engagement optical testing

(front plate removed to showgcore structure) rrors for Coronagraphic Applications

Predicted TDM Performance

TAKE PICTURES FURTHER.

Areal density

- Including mount: 46.9 kg/m² (vs 60 kg/m² req.)
- Mirror alone: 41.9 kg/m²

Stiffness

- First free mode: 259 Hz (vs 200 Hz req.)
- First mounted mode: 87 Hz (vs 85 Hz req.)

On-orbit surface figure

- Low freq (λ > 40cm): 10 nm rms
- Mid freq (40cm > λ > 2cm): 4.7 nm rms
- High freq (2cm > λ > 1mm): 1.4 nm rms
- Stress margins of safety are positive in all mirror and mount components

TDM Finite Element Model (back plate removed to show core details)

TAKE PICTURES FURTHER.

Existing Kodak Processes Yield Superb Performance in Mid-Spatial Bands

Large Monolithic Mirror for TPF

Key Innovations in Lightweight Mirror Technology

TAKE PICTURES FURTHER.

Faceplate Pocket Milling

 Front and back faceplates are pocket milled to reduce mirror mass while maintaining optical performance

(Isometric View)

BP Pocket Milling:
3 Ribs Per Cell

Pocket Core I/F Rib (dark area shows core footprint)

Section of Pocket Milled Back Plate
(Isometric View)

Intercell

Edge Welding of ULE® Glass

TAKE PICTURES FURTHER.

- Edge welding lightweight ULE® blanks is a key LMM technology
 - Corning has a long history of welding ULE® glass into various shapes
 - Edge welding lightweight blanks for LMM is an extension of existing methods

Fusion Welded ULE® Mirror Core

Large-Fusion Welded ULE® Mirror Edge Ring

Edge-Welding Demonstrations

- Corning is fabricating edge-welded test samples for Kodak evaluation under a current NRA study
 - Samples will be processed at Kodak to evaluate optical finishing across welds and optical performance of seams in welded mirrors

Solid 230 mm Edge-Welded Demo Mirror

Lightweight Edge-Welded Demo Blank

Edge-Welded Facesheet Blank-Fabrication Results

TAKE PICTURE

Corning successfully welded both the facesheet and sandwich blanks

Edge-Welded Facesheet

Close-up of weld in the facesheet

Edge-Welded Sandwich

Post-anneal polarimetry indicates zero or extremely low stress in all welds of both the facesheet and sandwich blanks

Edge-Welded Facesheet – Polishing and Testing

 The edge-welded facesheet was successfully polished across the sealed welds with no anomalies or discontinuities

- The edge-welded facesheet is currently in thermal test at Kodak
 - No local figure change observed at +10°C above ambient: 0.002 λ RMS after removal of lower order zernikes and thermal noise

Edge-welded facesheet at elevated temperature reveals no local figure change

Subscale Demo Mirror Design

• The subscale demo design maintains the challenges of the full-size mirror, while fitting within existing facilities

Design features include 4 edge-welded segments, pocket-milled front
 and back plates, and an off-axis asphere

Summary

- TDM Program will demonstrate ability to fabricate a large optic to quality levels required to enable successful coronagraphic mission
 - Optical Metrology and Mirror Processing Technologies will demonstrate the ability to address the demanding mid-spatial frequency specifications
 - Low-strain mirror mount approaches will show that it is feasible to develop mount techniques that will maintain the mirror quality and can survive launch
- LMM has developed a TPF scale mirror concept
 - Concept requires development of edge welding to assemble multiple segments into a monolithic structure
 - First-order tests validate edge welding feasibility
 - Subscale mirror concept defined to reduce fabrication risk on a larger scale traceable to the LMM design concept